18,022 research outputs found

    Superconducting Vortices induced Periodic Magnetoresistance Oscillations in Single Crystal Au Nanowires

    Full text link
    We show in this paper that it is possible to induce superconducting vortices in a gold nanowire connected to superconducting electrodes. The gold nanowire acquires superconductivity by the proximity effect. The differential magnetoresistance of the nanowire beyond a critical magnetic field shows uniform oscillations with increasing field with a period of \phi0/(2\pir^2) (\phi0 = h/2e is the superconducting flux quantum, r = 35 nm is the radius of the nanowire). We demonstrate that these periodic oscillations are the signatures of the sequential generation and moving of vortices across the gold nanowire

    LHC Signatures of Two-Higgs-Doublets with Fourth Family

    Full text link
    On-going Higgs searches in the light mass window are of vital importance for testing the Higgs mechanism and probing new physics beyond the standard model (SM). The latest ATLAS and CMS searches for the SM Higgs boson at the LHC (7TeV) found some intriguing excesses of events in the \gamma\gamma/VV^* channels (V=Z,W) around the mass-range of 124-126 GeV. We explore a possible explanation of the \gamma\gamma and VV^* signals from the light CP-odd Higgs A^0 or CP-even Higgs h^0 from the general two-Higgs-doublet model with fourth-family fermions. We demonstrate that by including invisible decays of the Higgs boson A^0 or h^0 to fourth-family neutrinos, the predicted \gamma\gamma and VV^* signals can explain the observed new signatures at the LHC, and will be further probed by the forthcoming LHC runs in 2012.Comment: 22pp, 10 Figs, JHEP published version, references adde

    Probing Gravitational Dark Matter

    Full text link
    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to gravitational interactions of the DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) acts as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χs\chi_s. It is a Z2Z_2 odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξsχs2R\xi_s \chi_s^2 R, where ξs\xi_s is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξsχs2R\xi_s \chi_s^2 R, together with Higgs-curvature nonminimal coupling term ξhH†HR\xi_h H^\dag H R, induces effective couplings between χs2\chi_s^2 and SM fields which can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.Comment: 33pp, JCAP Final Version. Only minor rewordings, references adde

    Asymptotically Safe Higgs Inflation

    Full text link
    We construct a new inflation model in which the standard model Higgs boson couples minimally to gravity and acts as the inflaton. Our construction of Higgs inflation incorporates the standard model with Einstein gravity which exhibits asymptotic safety in the ultraviolet region. The slow roll condition is satisfied at large field value due to the asymptotically safe behavior of Higgs self-coupling at high energies. We find that this minimal construction is highly predictive, and is consistent with both cosmological observations and collider experiments.Comment: 16pp, to match JCAP Final Version, only minor refinements, references adde
    • …
    corecore